
I Know It When I See It:
Observable Races in JavaScript Applications

[Position Paper]

Erdal Mutlu Serdar Tasiran

Koç University

{ermutlu,stasiran}@ku.edu.tr

Benjamin Livshits

Microsoft Research

livshits@microsoft.com

Abstract

Despite JavaScript runtime’s lack of conventional threads,
the presence of asynchrony creates a real potential for con-
currency errors. These concerns have lead to investigations
of race conditions in the Web context. However, focusing on
races does not produce actionable error reports that would
at the end of the day appeal to developers and cause them
to fix possible underlying problems.

In this paper, we advocate for the notion of observable
races, focusing on concurrency conditions that lead to visu-
ally apparent glitches caused by non-determinism within the
runtime scheduler on the network. We propose and investi-
gate ways to find observable races via systematically explor-
ing possible network schedules and shepherding the sched-
uler towards correct executions. We propose crowd-sourcing
both to spot when different schedules lead to visually broken
sites and also to determine under what environment condi-
tions (OS, browser, network speed) these schedules may in
fact happen in practice for some fraction of the users.

1. Introduction

Today’s client-side Web has developed largely without much
concern around multi-threaded execution.

When it comes to client-side Web programming, to-
day JavaScript powers the majority of large and popular
Web sites. JavaScript execution is single-threaded. Yet the
complex needs of sites such as Facebook, Outlook, Google
Maps, and the like have lead to asynchrony becoming a
common way to program complex Web applications. It is
asynchronous processing that is responsible for interactive
and responsive user interfaces (UIs) that operate without
blocking the UI thread or requiring a reload, as did Web
applications of the late 1990s. JavaScript’s event-driven
execution model matches the asynchronous call paradigm
very well. Large JavaScript applications extensively use
callbacks: function closures that are placed on the event
loop for later processing. Here, a network connection is
open and a onreadystatechange handler is set up to pro-
cess return data as it is returned by the network. Perhaps
the most common use of asynchrony is JavaScript Web
applications communicating with back-end servers using a
XMLHttpRequest (XHR) object, as shown in Figure 1.

Despite JavaScript lacking conventional threads, the
presence of asynchrony creates a potential for races, in a
way that is similar to concurrent code running on a single
processor. In particular, the ordering of event execution in
JavaScript as well as the timing of completions of asyn-
chronous requests is non-deterministic, prone to be affected
by network timing, etc. Asynchrony in JavaScript programs,
therefore, may result in concurrency-related errors.

Prior work: Zheng et al. [9] propose a static technique to
detect potential races in JavaScript applications. More re-
cently, Petrov et al. [6] and Raychev et al. [7] have observed
the potential for asynchrony creating out-of-order execution
and developed a notion of race conditions for Web applica-
tions written in JavaScript. In principle, race conditions can
arise because of accesses to data shared among components
of a Web page which are not ordered by proper synchro-
nization, or, more formally, a happens-before relation. Of
course, on a Web page, the entire DOM is (giant blob of)
global state, creating the potential for races.

Petrov et al. [6] define a happens-before relation for Web
pages and generalize the notion of race conditions to take
into account cases where, logically, there are unordered ac-
cesses to the same resource. The authors present a dynamic
method for detecting races in a given execution of a Web
page, explore similar executions that could potentially be
racy, and, in later work [7] identify and filter out large sets
of benign races.

Despite these significant efforts, we are not aware of
any techniques of this sort being applied in practice. We
conjecture that the potential for high false positive rates

var req = new XMLHttpRequest();
req.open("GET",

"login.php?name="+ username, true);
// set up the callback
req.onreadystatechange = function () {

if(req.readyState == 4) {
// do something

} };
req.send(null);

Figure 1: Typical use of XHR.

MSR-TR-2014-29 1 February 28, 2014



1.1 Exposing Races with Systematic Exploration 1 INTRODUCTION

and the need for result post-filtering [6, 7], combined with
a lack of prioritization of warnings, does not result in very
actionable results. Put one way, the approaches above take
a low precision/high recall approach to race detection. In
contrast, the focus of this work is on a high precision/low
recall oracle for harmful races, as well as recovery techniques.

What is the damage: As is the case for shared-memory
concurrent programs, race conditions in Web pages are low-
level events that may be symptomatic of higher-level concur-
rency and design errors. However, race conditions are only a
proxy for serious concurrency errors and can be inaccurate
as a correctness criterion in two ways:

• False positives: as investigated in [6, 7] race conditions
may be entirely benign and not lead to user-observable
errors, data corruption or loss. Moreover, Web users gen-
erally have lower expectations of robustness than users
of systems code or, say, compilers. The most common re-
action to a misbehaving Web application may be to just
reload the underlying page.

• False negatives: fixing a race condition may not fix the
real concurrency error. In an example reported in [9], a
request issued by the user via a mouse click is applied
not to the data currently displayed to the user, but to
data that is in the process of being received. In this
example, the real bug is an atomicity violation and a
race condition is the symptom. In examples such as this
one, it is possible to fix the race condition (the symptom)
but not the actual bug.

We argue that so far, there has not been a satisfactory oracle
proposed that distinguishes benign and harmful Web races
proposed in the literature. In this paper, we endeavor to
develop such an oracle.

Observable races: Our approach is the mirror opposite
of the one in prior work outlined above: instead of finding
potential races and then filtering them to focus on the more
damaging ones, we start with the category of races that is
decidedly noticable by the user. We wish to find races that
are both provably damaging and fixable; it is not our goal
to be exhaustive.

We call races that lead to buggy behaviors that are visible
to the end-user observable races. A fundamental issue with
bug detection tools, both static and runtime, is explaining
analysis results in a way that is understandable by the devel-
oper, and ultimately leads to a fix. Focusing on observable
races naturally allows us to create repros for our findings,
i.e. visually obvious proofs of there being a race1.

For an example of a behavior discrepancy that is visible to
the end user and results in a semantically different output
for the web page, consider the two screenshots shown in
Figures 2a and 2b. These screenshots were obtained from
two different XHR timings (shown in Figure 3a and 3b) on
an artificially-broken version of the FedEx web site, in which
we replaced some synchronous XHR calls with asynchronous
ones in order to be able to illustrate the semantic visual

1 Admittedly, some “deeper” properties such as “does this race
lead to monetary loss” or “does this race lead open up a security
vulnerability” cannot be addressed with our definition.

(a) Screenshot for one unmodified XHR call timing.

(b) Screenshot for an alternative, randomly-delayed XHR timing.

Figure 2: Screenshots obtain for two different XHR timings for
an artificially-broken version of the FedEx Web site.

differences (the ”smoking gun”) that we target with our
approach.

1.1 Exposing Races with Systematic Exploration

In order to trigger different concurrency-related behaviors of
a Web application, we effecively virtualize the network in-
terface exposed to JavaScript applications via XMLHttpRe-
quest (XHR). We provide a mechanism to wrap XHR calls
and systematically explore all possible XHR call orders.
Our technique uses a proxy based dynamic instrumentation
tool [4] to employ source-level instrumentation for control-
ling XHR calls.

MSR-TR-2014-29 2 February 28, 2014



1 INTRODUCTION 1.2 Smoking Gun

(a) Well-behaved timing.

(b) Defective timing resulting in observable race.

Figure 3: Original and modified XHR timings for the artificially-
broken version of the FedEx site.

In our initial effort (Section 2), we investigated differ-
ent orderings of XHR calls using a randomized exploration
mechanism by applying randomized delays to each XHR
call. We experimented with XHR-heavy Web sites chosen
from the Alexa index and we explored a large number of
XHR orderings in a brute-force manner. Surprisingly, even
on sites in which this approach was able to explore all pos-
sible XHR interleavings, we did not detect any observable
races. While this might be possibly be explained by the fact
that for Web sites with observable races, the brute-force ap-
proach did not exercise any of the observable race scenarios,
we believe this explanation to be unlikely. We instead con-
jecture that observable Web races in the wild are extremely
rare. In this work, we build a systematic XHR schedule ex-
ploration tool (Section 3) that, combined with the rest of
our approach described below, will serve as a detection tool
for observable races. We are going to use this tool to test
our conjecture that observable races are extremely rare.

Exhaustive systematic exploration of XHR schedules con-
cretely is not the only way to detect observable races; indeed,
one could perform symbolic execution or multi-execution,
both of which have been tried for JavaScript before [5, 8].
Once we have at least two different XHR timings on a given
application for which there is indication that the visual out-
puts are different, we can compare the outputs in a more
semantic manner.

I know it when I see it: The most direct way to
perform such a comparison is to capture screenshots that
the different XHR call orders result in, in an effort to spot
visual differences. There are several approaches to being able
to spot visual differences due to races:

• the developer can be involved in the process, yet the
number of schedules may prove so large that considering
all before/after screenshots will be prohibitively costly;

• screenshot differencing may be done automatically [1].
While in many cases the before and after images are ex-
actly the same, in some cases there are subtle differences.

Figure 4: Overall distribution of response times
for the Optimizely snippet worldwide, with
the average response called out explicitly from
blog.optimizely.com/2013/12/11/why-cdn-balancing/.

Moreover, these differences are often semantic: a slight
difference in page layout such as a table border being
moved by a millimeter may result in a lot of pixels being
different between the two images;

• the task of screenshot differencing can be given to hu-
mans who are, we argue, better suited to the task of de-
termining which differences are semantic and which are
minor differences in appearance.

Our current implementation uses a combination of the last
two approaches to build a semantic oracle: if the before/after
images are not the same, we ask crowd workers to decide
if they are indeed semantically different and, if so, how.
Note that the issue of network non-determinism needs to be
addressed: in general, we need to replay the same network
responses if we hope to get the same visual result. This is
because the majority of popular Web pages use ads, which
often change on every page load and need to be memoized
and replayed back.

1.2 Smoking Gun

The repros described above usually take the form of a
before/after screenshot pair, the before looking as expected
by the user, the after being broken in some way. They play a
tremendous role in creating convincing and actionable error
reports.

It is important to recognize that there is a fair bit of
inertia when it comes to trusting the results of analysis
tools, especially static analysis tools that reason about “the
hypothetical.” This is due to an informal belief that the bug
will not occur in practice. But more fundamentally, even
in safety-critical code, developers are often fearful of fixing
races, unless they can be be clearly convinced of the damage,
for fear of introducing new errors, unmasking other errors,
introducing performance or security issues, etc.

It is our position that showing screenshots with visual
defects to the developer would serve as a more convincing
argument than presenting hypotethical races found via ei-
ther static analysis or runtime exploration. It is especially
important to note that developers might be reluctant to con-
sider results they consider hypothetical for applications that
have already been deployed and tested in the field. To sum-

MSR-TR-2014-29 3 February 28, 2014



1.4 Schedule Shepherding 1 INTRODUCTION

marize, our ultimate goal is to present the developer with a
combination of the following as an error report:

• Scenario description (workload and at least two different
XHR schedules);

• implicit constraints being violated, such as a happens-
before relation that does not hold for the offending exe-
cution;

• before/after screenshots;

• environment/network conditions that lead to the screen-
shots above.

1.3 Prioritizing Races Using a Crowd

Finding an error “in the wild” as opposed to finding one
in an execution that has never been observed in real-world
conditions will lead to bug reports of significantly higher
intrinsic value. We can use a crowd of users not only for
distinguishing between “good” and “bad” screenshots of a
Web application shown in browser. We can, in fact, use a
crowd for confirming a particular race as observed in an
actual execution. A key element of this strategy is to record
(and profile) crowd workers based upon their environment
characteristics such as the OS they use, the browser they
run, the device from which they access the Web, as well as
network characteristics (3G, 4G, WiFi, T3, T1).

One way of using the crowd for exploring the landscape
of interleavings possible in the wild is to

• wrap XHR calls with instrumentation and logging code,
and have the crowd members log the order of callbacks
they experience,

• ask users or have a runtime monitor whether a harmful
outcome was observed, and

• store both buggy and well-behaved interleavings, along
with the user’s configuration information.

This can be seen as crowd-sourcing the exploration of dif-
ferent schedules induced not by systematic exploration but
by different configurations, in addition to crowd-sourcing the
determination of whether a Web page output is semantically
broken or not.

The challenge of this strategy will be in exploring the long
tail of the population when it comes to these characteristics.
In particular, it is easy to explore the common case such as
Internet Explorer 10, 32-bit on Windows 7 or Chrome 22
on MacOS X, but finding someone who uses a particularly
uncommon version of a rare browser on a slow connection is
likely to be both more challenging and more fruitful, as these
configurations are unlikely to have surfaced during testing.
Being able to selectively solicit users with uncommon evi-
ronment combination is key in making this approach work
well.

If we also have statistics about what percentage of users
are in every segment (OS, browser, device, network speed),
we can also extrapolate to predict how common every race
may be in practice based on the data we sample via the
crowd. Developers would find this information useful for
prioritizing bugs.

Figure 5: Total mobile browser distribution.

1.4 Schedule Shepherding

For Web applications in wide use, it is expected that in
“most common cases” the Web page must not be resulting
in serious concurrency errors. We build upon this intuition
and record “well-behaved” schedules/interleavings for a Web
application, i.e., interleavings that do not lead to outcomes
identified as errors during crowd-sourcing. We propose the
use of schedule shepherding to avoid observable races.

Based on our brute-force randomized exploration exper-
iments, we conjecture that observable races are rare events.
Yet, they may occur for widely-deployed applications be-
cause of the inherent diversity of devices, browsers, oper-
ating systems, and network conditions. While races in de-
ployed applications are unlikely to appear for the most com-
mon configurations, we observe a long-tail phenomenon in
terms of response latency (Figure 4) and also the browser
being used (Figure 5). As a result, uncommon configurations
may not be covered in testing, leading to the potential for
rare, but damaging races in deployed code. Moreover, even
if races happen in the field, perhaps, for uncommon config-
urations, users are likely to chalk whatever they see up to
“random glitches” so common in today’s Web and not report
them to the developer. It is our goal to shepherd the uncom-
mon but buggy interleavings towards well-behaved ones.

By orchestrating the order of execution of wrapped XHR
calls (by delaying the execution of a callback, if necessary)
we can guide or shepherd the execution order of XHR
responses/callbacks toward known, well-behaved schedules.
While such an approach would not be viable for extremely
critical systems software, it provides a lightweight fix for
concurrency errors that might otherwise remain completely
unaddressed.

1.5 Key ideas

To summarize, the key ideas put forth in this paper are

Observable races. The notion of observable races, as de-
termined by visual inspection of the Web application.

Systematical exploration for XHR call orders. A mech-
anism for systematically exploring all possible orderings
of asynchronous calls in order to exercise potentially de-
fective schedules.

MSR-TR-2014-29 4 February 28, 2014



3 SYSTEMATIC EXPLORATION

Crowd-sourcing for finding concurrency bugs. A crowd-
sourcing approach for determining whether a concur-
rency error has resulted in observable non-determinism.

Smoking gun detection We propose ways to find observ-
able data races “in the wild”, as opposed to in hypothet-
ical, synthetic executions. This approach involves use a
crowd of users in a different capacity than before.

Schedule shepherding. Shepherding of Web-page non-
determinism in order to avoid outcomes determined to
be harmful via crowd-sourcing.

2. Randomized Exploration

For our randomized exploration, we focused on Web sites
from different contexts. We analyzed some Web sites that
have been reported to contain data races that are classified
as harmful in prior work [6, 7]. We also investigated Web
sites that make extensive use of XHR calls (Figure 6) that
we obtained by analyzing the Alexa top 4,000 sites. With
the help of scriptable WebKit mechanisms [2, 3], we were
able to inject our wrapped XHR call methods for applying
our randomized delay strategy to Web sites under test and
also create Web site screenshots at the end of the page load
event.

We first provide key features of our approach for deter-
mining observable races. In order to identify widely used,
XHR-call-heavy Web sites, we examined the Alexa top 4,000
site list. Out of 4,000 Web sites, we selected 900 Web sites
containing at least one XHR call. We believe we would have
ended up with a higher count if we had explored sites that
require authentication such as Outlook, Facebook, etc. We
used an automated network traffic recording mechanism that
collects HTTP Archive (HAR) file for each Web site in the
Alexa top 4,000 sites. After analyzing the collected HAR
files, we were able to count the number of XHR calls made
for each Web site. For illustration, Figure ??

Figure 6 presents data about sites we investigated that
are heavily-dependent on XHR calls. The table provides
information about the number of times XHR was called at
runtime as a result of visiting the page. Additionally, the
table shows statistics about the mime types of the responses
obtained via XHR and also the types of the XHR calls
made (XHR calls can also be made synchronously). This
allows us to distinguish between JSON, JavaScript code,
and plain text being returned. In order to be able to trigger
different response time orderings, we wrapped XHR calls
with randomized delays. To record the visual consequences
of different XHR orderings, we captured the screenshot of
the loaded Web site with and without randomized delays.
We automated this procedure for easy repeatability. Our
automated procedure works as follows;

1. We capture network traffic records and two screenshots
of a Web site by loading it twice before applying any
delay mechanisms

2. We capture the network traffic record and the screenshot
of the Website after our randomized delays applied.

3. We eliminate cases in which the unmodified and randomly-
delayed versions of the page produce the same screenshot
by using a masking mechanism [1].

req.onreadystatechange = function () {
if(req.readyState == 4) {

// first handler
var req2 = new XMLHttpRequest();
req2.onreadystatechange = function () {

// second handler
...

}
}

};
}

Figure 7: XHR chaining.

4. We then crowd-source the determination of whether the
randomly-delayed version of the Web page is broken.

Although, in theory, there are n! possible XHR call orders
for n asynchronous XHR calls, in practice this number can
be lower as Web application developers use chained XHR
calls where one callback function initiates another XHR
call. Chaining creates constraints that restrict the number
of possible schedules. An example of chaining is shown
in Figure 7. The order of onreadystatechange handler
execution is preserved.

For our randomized exploration experiment, we selected
a couple of Web sites with an average number of XHR calls.
A representative example is http://www.news24.com with 7
asynchronous calls which should have at most 7! = 5, 040
possible orders. We and applied randomized exploration
mechanism without any prior analysis for chained XHR
calls. Even though we employed our randomized mecha-
nism in a brute-force manner on these sites, we were only
able to investigate around 1, 600/5, 040 distinct XHR call or-
ders without observing any visual defects on the generated
screehshots.

Thus, we conjecture that observable races are rare events
and to uncover such events systematical exploration with
the knowledge of chained XHR calls is needed.

3. Systematic Exploration

For our systematic exploration, we carried out a source-level
instrumentation of XHR calls using a proxy-based dynamic
instrumentation tool for JavaScript, AjaxScope [4]. This
approach uses a client-side proxy positioned between the
Web server the browser to dynamically capture and rewrite
JavaScript code. We wrapped XHR calls with additional
recording mechanisms for capturing the XHR scheduling
order of a viewed Web page.

Our exploration starts by recording an initial order of
the XHR calls observed during the loading of the page us-
ing AjaxScope instrumentation. We also devised a logging
mechanism for capturing information about chained XHR
calls. When systematically exploring XHR schedules, these
chaining dependencies are taken into account so our explo-
ration tool never attempts to exercise two chained XHR calls
in the wrong order.

Starting from the recorded initial XHR order and chained
XHR call information, our exploration will generate all pos-
sible XHR schedule permutations to be tested. For each gen-

MSR-TR-2014-29 5 February 28, 2014



4 DISCUSSION

Response mime types Classifying XHR

Web Site JSON JavaScript Text Sync XHR Async XHR Total XHR

*.mlb.com 9 2 24 10 25 35
discussions.apple.com 26 0 0 0 26 26
www.aljazeera.net 17 1 5 0 23 23
www.gazzetta.it 3 0 19 10 25 22
wireless.att.com 3 0 15 2 16 18
www.welt.de 0 0 18 0 18 18
www.tvguide.com 1 5 11 0 17 17
www.optimum.net 3 1 12 0 16 16
www.fujitv.co.jp 7 8 1 3 13 16
www.bild.de 2 0 12 0 14 14
www.nasa.gov 12 0 2 0 14 14
news.qq.com 0 0 12 0 12 12
www.zaobao.com 0 0 12 0 12 12
www.girlsgogames.com 9 0 3 4 8 12
www.sports.ru 3 0 8 0 11 11
www.premierleague.com 2 0 9 2 9 11
www.eltiempo.com 0 0 10 0 10 10
www.myvideo.de 9 0 0 0 9 9
www.politico.com 0 1 8 0 9 9
www.att.com 3 0 6 2 7 9

Figure 6: Top 20 XHR-heavy Web sites in our experiments.

erated schedule, our tool enforces the corresponding sched-
ule and takes a screenshot of the resulting Web page on the
browser. In order to load a Web page with a desired XHR
call schedule, we instrumented each XHR callback function
to be executed as according to the provided order. Given a
schedule, our instrumentation controls the execution of each
triggered callback by cross-checking with the schedule. We
give each XHR a unique ID. Consider a given desired order
of execution of XHR callbacks, expressed as a permutation
of XHR IDs. When responses from the network arrive, the
corresponding callbacks are not immediately executed. In-
stead, the execution of the callback for XHR with ID i is
delayed until i is the next ID in the given permutation.

Below is the step-by-step explanation of our mechanism:

1. Capture initial order of XHR calls and the information
about chained XHR calls using instrumentation provided
by AjaxScope.

2. Depending on the initial order and information about
chained XHR calls, generate all possible XHR schedules
for exploration.

3. For each generated schedule, enforce that Web page is
loaded with XHRs following this schedule, delaying them
as needed.

4. Collect screenshots for each enforced schedule to be
checked for observable races.

4. Discussion

Compared to other runtime environments, concurrency in
the browser has not been exhaustively specified or for-
malized. When it comes to the issue of scheduling, non-
determinism can be caused by both the built-in scheduler
and environment conditions such as the order of network
message arrival. While researchers have explored the issue
of runtime races, their findings have not proven actional-

able for the Web developer for two reasons. First, because
of a high false positive rate, the developer does know know
which races to fix. Second, due to the absence of explicit
concurrency primitives for programming on the Web plat-
form, the developer does not know how to fix them. While it
is tempting to ask for tools and solutions, we claim that the
sources and extent of the problem are far from being well
understood at this point.

Our long-term research involves answering the following
research questions.

Schedule diversity landscape. What kind of schedules
are common in complex Web applications? Is it the case
that most or all widely-used browsers effectively follow
the same schedule or are there significant differences in
terms of orders that result from Chrome vs. Firefox?
What is the density distribution like? Is it the case that
there is a long tail in terms of observed schedules?

Smoking gun. Do obscure, synthetically-generated sched-
ules actually correspond to schedules that may be ob-
served in the wild? Can we actually detect these un-
common races in the wild, recoding the conditions under
which they are possible?

Finding a crowd. Can we “design” a user population that
would allow us to experimentally confirm such races? For
example, perhaps, choosing users of Chrome on the iPad
will produce unusual schedules, so deliberately targeting
such users may be fruitful.

Observability vs. damage. Can we correlate races to
damage to the user, application state, etc. It is not ob-
vious what the “worst thing that can happen” is. Is it
just a broken page or can observable races lead to logical
bugs resulting in, say, financial losses or, possbily, enable
security vulnerabilities?

MSR-TR-2014-29 6 February 28, 2014



REFERENCES REFERENCES

Better runtime monitors. While our focus has been on
visually observable races, we can also explore runtime
monitoring as an oracle for finding damaging descepan-
cies due to scheduling differences.

5. Conclusions

This paper presents both our short-term research explo-
ration and long-term vision for understanding and possibly
fixing concurrency errors in Web applications.

References
[1] W. De Groef, D. Devriese, N. Nikiforakis, and F. Piessens.

Flowfox: A web browser with flexible and precise information
flow control. In Proceedings of the ACM Conference on
Computer and Communications Security, CCS ’12, pages 748–
759, New York, NY, USA, 2012. ACM.

[2] A. Hidayet. Phantomjs. http://phantomjs.org/
quick-start.html.

[3] L. Jouanneau. Slimerjs. http://docs.slimerjs.org/0.9/
release-notes.html.

[4] E. Kiciman and B. Livshits. AjaxScope: A platform for re-
motely monitoring the client-side behavior of web 2.0 applica-
tions. In Proceedings of Twenty-first ACM SIGOPS Sympo-
sium on Operating Systems Principles, SOSP ’07, pages 17–
30, New York, NY, USA, 2007. ACM.

[5] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert. Rozzle:
De-cloaking internet malware. In Proceedings of the IEEE
Symposium on Security and Privacy, SP ’12, pages 443–457,
Washington, DC, USA, 2012. IEEE Computer Society.

[6] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby. Race de-
tection for web applications. In Proceedings of the Conference
on Programming Language Design and Implementation, PLDI
’12, pages 251–262, New York, NY, USA, 2012. ACM.

[7] V. Raychev, M. Vechev, and M. Sridharan. Effective race
detection for event-driven programs. In Proceedings of the
International Conference on Object Oriented Programming
Systems Languages &#38; Applications, OOPSLA ’13, pages
151–166, New York, NY, USA, 2013. ACM.

[8] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and
D. Song. A symbolic execution framework for javascript. In
Proceedings of the IEEE Symposium on Security and Privacy,
SP ’10, pages 513–528, Washington, DC, USA, 2010. IEEE
Computer Society.

[9] Y. Zheng, T. Bao, and X. Zhang. Statically locating web
application bugs caused by asynchronous calls. In Proceedings
of the International Conference on World Wide Web, WWW
’11, pages 805–814, New York, NY, USA, 2011. ACM.

MSR-TR-2014-29 7 February 28, 2014


